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A S I M P L E  ~ P R O C E D U R E  FOR C O N S T R U C T I N G  S O L U T I O N S  

O F  N O N L I N E A R  H E A T - C O N D U C T I O N  P R O B L E M S  BY T H E  

K A N T O R O V I C H  M E T  HOD 

G.  N .  G u s e n k o v  a n d  I .  M .  C h i r k o v  UDC 536.24.02 

A simplified procedure  based on expansion in the neighborhood of an approximate  solution is 
d iscussed for solut ion of the quasi l inear  heat-conduction equation. 

It is general ly  known that ei ther  the energy method or the more  promising method of Galerkin [2] is 
used in connection with the method of Kantorovich [1]. The  c rux  of e i ther  approach is that i n t h e  solut ion of 
nonlinear problems of mathematical  physics one must inevitably cope with sys tems  of nonlinear ordinary d i f -  
ferent ia l  equations and algebraic  equations, a prospect  that often incurs  insurmountable difficulties and 
natural ly imposes limitations on prac t ica l  applicat ions.  A vital  problem in this connection is the  s e a r c h  for 
a p rocedure  that can be used to  construct  solutions of nonlinear problems by reduct ion to  ordinary d i f fe ren-  
t i a l  equations without having to solve sys tems  of nonlinear equations, at least in the s tage of re f inement  of the 
initial approximation.  

Below we consider  such a p rocedure  for the quasi l inear  heat-conduct ion equation in th ree -d imens iona l  
space  and for a genera l  type of nonlinear boundary-value problem.  In addition to  the requi rements  of ex i s -  
t ence  and uniqueness of a solution, we impose constraints  that a r e  quite s t rong,  but a r e  nonetheless frequently 
justified, as a ru le ,  in a number of prac t ica l  problems,  as for  example i n t h e  a rea  of heat physics :  1) The 
solution T (x, y,  z, t) is r ep resen tab le  with sufficient prac t ica l  accuracy  in some neighborhood of a ce r ta in  
initial approximation T = T0(x, y,  z, t) by an equation in the form of a power s e r i e s ,  finite or infinite, which 
is different iable  with r e spec t  to the coordinates and t ime;  2) in the neighborhood of T = T0(x, y,  z, t) the  co-  
efficients in the equation and in the boundary conditions a r e  analyt ical  functions of T .  

Consider  the equation 

OT 
f1(r) ~ = V [f~ (r) vTI (i) 

subject to the boundary conditions on the surface s 

fa (T) vT + f, (T)I~ = O. (2) 

In accordance  with constraints  1) and 2) we r ep re sen t  T and the functions fi (i = 1, 2, 3, 4) i n t h e  fo rm 

T = % @ e ~  l @  . . . e"cr (3) 

f~  = f ~ l r = r o  " Ofi! ( T - -  To) + . . = Pkl (e~am~- (4) 
OT T=r~ 

The  "Einstein ru le , "  i . e . ,  summation with respec t  to  a ce r ta in  index, is taci t ly  understood at a l l  t im es .  

As the initial express ion  for ce 0 we can take the solution given by, for example,  the integral  [3, 4] o r a n y  
o ther  suitable method. 

We subst i tute (3) and (4) into (1) and (2). We obtain 
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[~. (e'~z,,,) * e' a% at = V {P~,.,(~'a,,)~V%}; 

[~k~ (d'r + l~, (e"~z,.)~l, = 0; 
p , k , n = O ,  I ,  2 . . . . .  o o ,  

i n =  1, 2 ,  . . . , o o .  

(5) 

(6) 

-Equating coeff icients  .of like powers  of e : o n t h e  r i gh t -  and left-hand s ides  of (5) and set t ing them equal to  ze ro  
,in (6), w e  obtain the  following a r r a y  of equations and cor responding  boundary condit ions:  

ach ,., &z o 

~ 0 3 V a l  - ~  ~ 1 4 ( Z t V r  0 - ~ -  ~ 1 4 a 1 1 5  - -  0 ;  ( 8 )  

&z o &z, a% 
~o, ~ + p . ~  -~- + ~ ,~--~-  + ~1=~ -~- = v {~o~V~ + ~=~.V=o + ~= ,v= ,  + ~=~v=o}; (9) 

�9 �9 . 6 . . . . . . . . . . . . . . . . . . .  �9 �9 - - 

Equations (7) and (9) and the i r  coun te rpar t s  for  other  a i with the boundary conditions (8) and (10) a r e  l inear  
and,  hence,  much  s i m p l e r  to  so lve  than  the  or iginal  nonlinear  p rob lem (in pa r t i cu la r ,  by the s a m e  technique 
of reduct ion  to  ord inary  d i f fe ren t ia l  equations).  We a r e  a l so  aware  [1] that  the convergence  of the var ia t iona l  
method of Kantorovich for  l inear  s y s t e m s  is de te rmined  by  the a l r eady  p roved  [1, 2] convergence  of the  Ritz 
method.  Thus ,  if the  s e r i e s  (3) tu rns  out to  be  convergent ,  the  solut ion cons t ruc ted  by the  foregoing s c h e m e  
will converge  to  the  exact solut ion.  A s i m i l a r  s t a t emen t  appl ies  to  the case  in which the method of Galerk in  
is adopted as the  d i r ec t  method.  It is suff icient  for  p rac t i ca l  purposes ,  in light of the  rapid  convergence  of 
the  cor responding  s e r i e s ,  to  r e t a i n  only the  f i r s t  (one or two) t e r m s  of the  Kantorovich r e p r e s e n t a t i o n s .  The  
s a m e  is t r u e  of the s e r i e s  (3). 

As an  i l lus t ra t ion  we cons ider  the p rob l em [5] 

a---[ = a x  (1 + ?T) (11) 

T(0, t) = 1; T(x, O) = O. 

Fo r  s m a l l  va r ia t ions  the  s y s t e m  (11) can be used,  for  example ,  as a s impl i f ied  ve r s i on  for  analys is  of the be -  
havior  of the  base l ine  in the  nonlinear theory  of d i f fe rent ia l  ho t -wi re  a n e m o m e t r y  for a constant  speci f ic  heat 
and l inear  t e m p e r a t u r e  dependence of the t h e r m a l  conductivity.  

We limit  the  s e r i e s  (3) to the f i r s t  t h r e e  t e r m s .  We adopt as a 0 the solut ion obtained by the integral  
method:  

s o = l ~  2x6 +~2 ," 6--]/12(1--?)t. (12) 

We s e e k  a 1 and eL 2 in acco rdance  with the Kartcorovich method [1] as a s e r i e s  with r e spec t  to the re la t ive ly  
comple te  s y s t e m  of  functions Xki: 

~i -- 2 Xhl (x, t) ah~ (t); 

Zk~ = (6 - -  x) x ~ 

i = 1 ,  2, 

which sa t i s fy  ze ro-va lued  boundary conditions ; we s top with the  f i r s t  approximat ion ,  i . e . ,  

~z 1 = (6  - -  x )  x a  1, (13) 

-- (6 ~ x )  x a  v (14) 

We subs t i tu te  (12)-(14) into (7) and (8), which we then inser t  into the functional 

J(at) = (Lial, ai) (f~, as) (a~, f~); 

L~, a~, a { a~, a%l ; 
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L ~  = O~ 0 I O-~x ' 0~ l . ot ox (1+ (15) 

a {_ o i/ 

Forming the Eule r  equations f rom (15) and using zero-valued initial conditions, we obtain 
35--9"? 

x (6 - -  x) 
4 

23.3,,, 
3(1 --V) 

~= - -  [I --'. t ,2(v-,) ]x(6--x) .  
4 (2 + 5?) 

As a result, the approximate solution of the nonlinear problem (11) has the form 

x" x(6--x)  {t-- 3 5 . 9 v  3? (1 - -? )  23 ,,? } 
' ~  l-v-------Y . e �9 (16) 

2x _ + e - -  (1 -v t ,-~(,-v~ 
T = 1 1 /12(1- -? ) t  12(1--?)  t 4 . 2 + 5y 

d 

The values of T calculated according to  (16) for ,  say,  T = 0.1 and various values of x and t differ  f rom the 
corresponding exact solutions [5] only in the third place .  

We note that the same  resu l t  can be obtained more  s imply if the Galer ldn method is taken as the d i rec t  
one, 

NOTATION 

x, y,  z, coordinates ;  t ,  t ime;  e, smal l  pa rame te r ;  c~, coefficients in expansion of solution T into 
power s e r i e s  in e; fi, coefficients in s tar t ing  equation and boundary conditions; ~, coefficients in expansion 
of f into s e r i e s  in e; Xki, basis functions; aki,  unknown functions i n t h e  Kantorovieh represen ta t ion ;  ~/, 
constant coeff icient .  
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